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It has been commonly assumed that the corner or mount frequency in an isolator should
be designed as low as possible. This is one result of using a single-degree-of-freedom
(SDOF) system to model isolation systems. However, for systems that have flexible or
non-rigid foundations, a design point for the mount frequency can occur between the modes
of the base. By implementing this type of design, a strong interaction will exist between
the modes. When isolator damping is included, whether done passively or actively, more
than one mode can be attenuated by this new mount design. Therefore, the effects of the
mount frequency on isolation designs are discussed as well as using both passive and active
damping in the isolator. For active damping, three commonly used control methodologies
are discussed: a proportional-plus-integral-plus-derivative (PID) controller, a linear
quadratic Gaussian (LQG) regulator and a positive position feedback (PPF) controller.

7 1998 Academic Press

1. INTRODUCTION

There have been numerous publications that have used a single-degree-of-freedom (SDOF)
system to model both active and passive isolators [1–4]. The SDOF model consists of a
rigid equipment mounted by some sort of isolator to a rigid, massless base. These
assumptions are used to obtain a very simple calculation for the transmissibility. However,
there are cases when the base is not rigid but flexible and its influence on the
transmissibility must be determined. Several authors [5, 6] have looked at base flexibility;
however, they used approximate techniques to solve the isolation problem. Blackwood
looked at base flexibility as a perturbation to a rigid base solution, while Snowdon
analyzed a symmetrical isolation system. Also, these authors did not fully explore the effect
of the mount frequency on the isolation design.

This paper will use a method developed by Yang [7] to solve complex distributed
parameter systems, such as the flexible base, rigid equipment (FBRE) isolation problem.
This method will result in an exact solution to the FBRE system; therefore, it avoids
standard truncation errors that are found in current literature. The flexibility in the base
will be modeled as a Bernoulli–Euler beam and the beam damping will be modelled as
proportional damping. It will be shown that the design point for the mount frequency in
the FBRE system does not necessarily have to be as low as possible for best results. If
the mount frequency lies between the base modes, a strong interaction between the modes
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will exist. When isolator damping is included in the isolator, whether done actively or
passively, multiple modes can be attenuated.

2. SINGLE-DEGREE-OF-FREEDOM MODEL

A brief discussion of the SDOF model for vibration isolation will be described since
subsequent sections will compare results of the FBRE system with the SDOF model. It
is well known and understood that attenuation of the transmissibility will occur at the
point z2vo , where vo is the corner or mount frequency of the isolator; amplification will
occur in the region below this point. The transmissibility (T) is defined as the complex ratio
of the equipment vibratory displacement to the vibratory displacement of the beam at the
isolator attachment point. When viscous damping is included in the isolator, the
transmissibility is reduced at the resonant condition from a theoretical infinite value to a
finite value. However, the transmissibility for frequencies greater than z2vo will be
increased compared to an undamped system. There is still attenuation in this frequency
range but at a smaller level. Figure 1 shows the transmissibility for an undamped isolator
and an isolator having a 20% damping ratio (z) using passive and active isolators. The
high isolator damping in the passive system is used to show the increase of transmissibility
at high frequencies compared to a system with no damping.

Since passive isolators tend to increase the high frequency transmissibility, active
isolators are a good alternative. An active isolator can be designed to add damping at the
resonant condition without increasing the high frequency transmissibility. As seen from
Figure 1, active isolation has the same level of damping at the resonant condition
compared to a damped passive isolator. Also, the high frequency transmissibility for the
active isolator tracks the transmissibility of an undamped passive isolator.

Figure 1. Absolute transmissibility plots for SDOF model (−, passive z=0: +, active z=0·2; ––, passive
z=0·2).
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3. YANG’S METHOD

As mentioned previously, Yang developed a method to analyze complex one-dimen-
sional systems exactly. Unlike approximate methods, such as the assumed modes method
[8] or impedance methods [6, 9], no knowledge of the eigenvalues or mode shapes are
needed to model flexible systems. In fact, Yang’s method is somewhat similar to the finite
element method because it can be used to find the eigensolutions for a particular system.
His method is briefly described in the following sections.

3.1. - 

An nth-order, linear distributed parameter system response, W(x, t), can be described
by the following equation which is nondimensional in the spatial variable:

6A 12

1t2 +B
1

1t
+C7W(x, t)= f(x, t), x$(0, 1), tq 0, (1)

where A, B, and C are spatial differential operators that are equivalent to

A= s
n

k=0

ak
1k

1xk, B= s
n

k=0

bk
1k

1xk, C= s
n

k=0

ck
1k

1xk. (2)

The constants ak , bk , and ck can represent inertia, damping, distributed constraints,
Coriolis acceleration, axial loads, mass transport, centrifugal forces and circulatory effects;
the term f(x, t) is the external disturbance.

The system has inhomogeneous boundary conditions represented by

MjW(x, t)=x=0 +NjW(x, t)=x=1 = gj (t), te 0, j=1, 2, . . . , n, (3)

where Mj and Nj are linear, temporal, spatial, differential operators. gj (t) are known
functions representing the external disturbances at the boundaries.

The Laplace transform of equation (1) with respect to time is

{s2A+ sB+C}W� (x, s)= f�(x, s), (4)

where (�) represents a Laplace transformation and the initial conditions were neglected.
The boundary conditions in the Laplace domain are

M� jW� (x, s)=x=0 +N� jW� (x, s)=x=1 = ḡ(s)= ḡj (s)+ ḡIj (s), j=1, 2, . . . , n. (5)

ḡIj is a polynomial in s representing the initial conditions at the boundaries.
Equation (4) can be recast into state space form as

1

1x
h(x, s)=F(s)h(x, s)+ f(x, s), M(s)h(0, s)+N(s)h(1, s)= g(s). (6a, b)
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F(s) is defined as
0 1 0 · · · 0

0 0 1 0 0

F(s)= ···
···

···
··· 0 , (7)G

G

G

G

G

K

k

G
G

G

G

G

L

l

0 · · · · · · 0 1

do (s) d1(s) · · · · · · dk (s)

and the coefficients of the matrix F(s) are

dk (s)=−
aks2 + bks+ ck

ans2 + bns+ cn
, k=0, 1, . . . , n−1. (8)

The solution to equation (6a), given the boundary conditions in equation (6b) are

h(x, s)=g
1

0

G(x, j, s)f(j, s) dj+H(x, s)g(s), x$ (0, 1), (9)

where

G(x, j, s)=6eF(s)x[M(s)+N(s) eF(s)]−1M(s) e−F(s)j,
−eF(s)x[M(s)+N(s) eF(s)]−1N(s) eF(s)(1− j),

jQ x,
jq x,

(10a)

H(x, s)= eF(s)x[M(s)+N(s) eF(s)]−1. (10b)

3.2.  

The solution in equation (9) is valid for a single system; therefore, this section will
describe the solution for an arbitrary number of interconnected systems, i.e., subsystems.
For each subsystem, the displacement and strain vectors can be defined as
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a(x, s)= ···
, o(x, s)= ···

, (11)

1(n/2)−1W(x, s)
1x(n/2)−1

1n−1W(x, s)
1xn−1

where h= {aT(x, s) oT(x, s)}T. The internal force vector of each subsystem, P(x, s), is
described by

P(x, s)=E(s)o(x, s), (12)

where E(s) is a constitutive matrix. If g(s), M(s), and N(s) are defined as

g(s)=6a0(s)= a(0, s)
a1(s)= a(1, s)7, M(s)=$I0 0

0%, N(s)=$0I 0
0%,
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the solution of each subsystem in local coordinates becomes

a(x, s)=g
1

0

Ga (x, j, s)f(j, s) dj+Ha0(x, s)a0(s)+Ha1(x, s)a1(s), (13a)

P(x, s)=E(s)6g
1

0

Go (x, j, s)f(j, s) dj+Ho0(x, s)a0(s)+Ho1(x, s)a1(s)7. (13b)

Ga , Go , Ha0, Ha1, Ho0 and Ho1 are partitioned matrices of equation (10).

3.3.  

Suppose there are N nodes where Z subsystems are interconnected and define the global
displacements at each node by uk . The global nodal force of each subsystem is designated
by Qd

k , where k is a particular node and d is a given subsystem. At each mode there can
be constraint forces and external disturbances designated by Ck and pk , respectively. The
constraint matrix, Ck , is valid only for connection of lumped systems or distributed systems
at a single point. The force balance of the Z subsystems at node l is

QA
l (s)+QB

l (s)+QC
l (s)+ · · ·+QZ

l (s)−Cl (s)ul (s)+ pl (s)= 0. (14)

The global force vector of subsystem d at node l is defined as

Qd
l (s)=−RdPd(xl , s), (15)

where Rd is the transformation matrix of the local forces to global forces. However, the
local forces, Pd(xl , s), are defined in local coordinates and these coordinates need to be
transformed as well. The transformation of the local displacements to global coordinates
is accomplished with the transformation matrices Sd and Td which are defined at either end
of subsystem d:

ad(xl , s)=Sdul (s), ad(xi , s)=Tdui (s). (16)

Placing equation (13b) and equation (16) into equation (15) gives the global force vector
in terms of global coordinates:

Qd
l (s)=−Kd

ll (s)ul (s)−Kd
liui (s)− fd

l (s). (17)

This equation assumes that xi Q xl ; otherwise, the equations below need to be redefined.
The matrices in equation (17) are

Kd
li (s)=RdHo0(xl , s)Td, Kd

ll (s)=RdHo1(xl , s)Sd,

fd
l (s)=RdEd(s) g

1

0

Gd
o (xl , j, s)fd(j, s) dj. (18)

With this result, the global forces of each subsystem connected at node l are

QA
l (s)=−KA

ll (s)ul (s)−KA
li (s)ui (s)− fA

l (s),

QB
l (s)=−KB

ll (s)ul (s)−KB
lj (s)uj (s)− fB

l (s),

···

QZ
l (s)=−KZ

ll (s)ul (s)−KZ
lm (s)um (s)− fZ

l (s). (19)
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Note that these equations automatically satisfy displacement compatibilities at node l.
Placing equation (19) into equation (14) yields

Kll (s)ul (s)+Kli (s)ui (s)+Klj (s)uj (s)+ · · ·+Klm (s)um (s)= ql (s), (20)

where

Kll (s)=Cl (s)+KA
ll (s)+KB

ll (s)+ · · ·+KZ
ll (s),

Kli (s)=KA
li (s), Klj (s)=KB

lj (s) , . . . , Klm (s)=KZ
lm (s),

ql (s)= pl (s)− fA
l (s)− fB

l (s)− · · ·− fZ
l (s). (21)

If force balance is imposed at each and every node, a matrix equilibrium equation can
be formulated as

K(s)u(s)= q(s), (22)

where u(s)= {uT
1 (s) · · · uT

N (s)}T, q(s)= {qT
l (s) · · · qT

N (s)}T, K(s)=Kjk (s). Note that K(s),
u(s), and q(s) are the global stiffness matrix, global nodal displacement and force vectors,
respectively.

3.4.   

Suppose a subsystem is attached at node l has the following prescribed boundary
conditions at a point xi along the subsystem where xi Q xl :

B(s)h(xi , s)= k(s). (23)

By setting g(s), M(s), and N(s) as

g(s)=6 k(s)
a(xl , s)7, M(s)=$B(s)

0 %, N(s)=$0I 0
0%, (24)

the system response for each individual subsystem with the above prescribed boundary
conditions is

a(x, s)=g
1

0

Ga(x, j, s)f(j, s) dj+Ha0(x, s)k(s)+Ha1(x, s)a(xl , s), (25a)

P(x, s)=E(s)6g
1

0

Go (x, j, s)f(j, s) dj+Ho0(x, s)k(s)+Ho1(x, s)a(xl , s)7. (25b)

If xi q xl , the system response is the same except M(s) and N(s) are now defined by

N(s)=$B(s)
0 %, M(s)=$0I 0

0%. (26)

4. FLEXIBLE BASE, RIGID EQUIPMENT DESCRIPTION

The system that will be studied is a pinned–pinned aluminum beam of length L, with
the isolator mounted along the beam at a distance xi =L/3·125 as shown in Figure 2; the
mass of the equipment is assumed to be approximately the mass of the base. A detailed
discussion of the FBRE system using Yang’s method can be found in reference [10].
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Figure 2. Rigid equipment mounted on flexible base via an isolator.

Assuming that the flexibility in the base will be modeled as a Bernoulli–Euler beam, the
governing partial differential equation describing the FBRE system in the domain
D: 0Q xQL is

−EI
14w(x, t)

1x4 + f(x, t)+ fI (x, t)= r
12w(x, t)

1t2 . (27)

The term f(x, t) is the external force per unit length on the base and the term fI (x, t) is
the force per unit length due to the isolator. It is desired to include damping in the base
and the damping will be modeled as proportional damping. A brief discussion on how
proportional damping may be included in the above equation is given below. It should
be noted that equation (27) was derived by letting the spatial differential operators A, B,
and C in equation (1) be r, 0, and EI 14/1x4, respectively.

Assume that the force/unit length term f(x, t) can be divided into damping forces and
non-damping forces. The damping forces are assumed to be proportional to the velocity
and are proportional to the linear differential operator B. The damping force/unit length
will then be

Fdamp =−
1Bw(x, t)

1t
. (28)

It has already been assumed that the damping in the beam will be modeled as proportional
damping; so, the linear differential operator B is actually

B= aA+ bC. (29)

Substituting this information into equation (27) will lead to the final governing equation
for the beam over the domain D: 0Q xQL:

−EI
14w(x, t)

1x4 −$ra+ bEI
14

1x4% 1w(x, t)
1t

+ f(x, t)+ fI (x, t)= r
12w(x, t)

1t2 . (30)
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Note that the term f(x, t) is now the external force per unit length that does not include
any damping terms. The governing equation of motion for the equipment at the location
x= xi is

meÿ= fI (x, t)=−c{ẏ− ẇ(xi , t)}− k{y−w(xi , t)}. (31)

Equations (30) and (31) are used to develop the overall response for the FBRE system.
For example, two subsystems (segments 1–2 and 2–3) and three nodes can be used to
describe the system. The significant terms used in Yang’s method are

w(x, s) 0 1 0 0

1w(x, s)
1x

0 0 1 0

g
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h(x, s)=
12w(x, s)

1x2

, F(s)=
0 0 0 1

. (32)

13w(x, s)
1x3

−r(s+ a)s
EI(1+ bs)

0 0 0

5. PASSIVE ISOLATION

For the SDOF model, the mount frequency is designed to have the smallest possible
value so that high frequency disturbances will be attenuated as quickly as possible.
Therefore, it is desired to discover the effect of base flexibility for various values of isolator
stiffness, i.e., mount frequencies. It has also been shown for the SDOF model that isolator
damping will decrease the transmissibility at the resonant condition but increase the high
frequency transmissibility. Similar results occur when the base is no longer rigid but
flexible. The transmissibility (T) for the FBRE system is defined as the displacement (y)
of the equipment to the displacement (w(x, t)) imposed on the base.

5.1.  

For the following analysis, it is assumed that the base and isolator have no damping
and the mount frequency of the isolator is defined as wo =zk/me , where k is the isolator
stiffness and me is the equipment mass. Table 1 is a list of the flexible base, rigid equipment
(FBRE) frequencies for various isolator mount frequencies. If the mount frequency is
much lower than the first mode of the base (low-frequency mount design), the FBRE

T 1

FBRE frequencies for varying mount frequencies

Mount frequency (Hz)
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode No mount 7·1176 22·5079 71·1762

1 56·5800 7·0177 19·6002 31·7227
2 226·3200 57·3269 64·3001 113·2115
3 509·2202 226·5334 228·4943 251·5864
4 905·2822 509·2208 509·2386 509·4171
5 1414·5090 905·3208 905·6690 909·2033
6 2036·9077 1414·5467 1414·8861 1418·3245
7 2772·2491 2036·9095 2036·9256 2037·0881
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Figure 3. Influence of isolator damping of FBRE system with fo =7·1176 Hz (−, rigid base and equipment;
––, passive damping z=0; --, passive damping z=0·2).

system will have natural frequencies corresponding to the concatenation of the mount
frequency and the beam frequencies. The mount frequency becomes the first FBRE mode,
the first base mode is the second FBRE mode, the second base mode is the third FBRE
mode, etc. Note that the first mode of the FBRE system will be slightly smaller than the
mount frequency for a low-frequency mount design. However as the mount frequency is
designed closer to the first mode of the base, the modes of the FBRE system start to shift.
For a mount frequency designed at fo =22·51 Hz, the FBRE system will have a first mode
13% less than the mount frequency; the rest of the FBRE modes will be slightly higher
than the base frequencies given in Table 1 under the heading ‘‘No Mount’’.

Somewhat different results are obtained when the mount frequency is designed between
the base modes; this system will be referred to as the mid-frequency mount design. For
example, consider the case when the mount frequency is designed at fo =71·18 Hz; the
value of the mount frequency lies between the first two modes of the base. The new
frequency that is added to the FBRE system due to the isolator mount is no longer near
the mount frequency. In fact, the new mode of the FBRE system due to the isolator mount
is 113·21 Hz; this mode has shifted by 59%. There has also been a dramatic shift of the
base frequencies that are close to the mount frequency. The first mode of the FBRE system
has shifted from the base frequency of 56·58 to 31·72 Hz (44%) and the third mode of the
FBRE system has shifted from 226·32 to 251·59 Hz (11%). The significance of this
interaction will be demonstrated when the isolator includes damping.

5.2.    

It was shown in the previous section that when the mount frequency is designed lower
than any of the base modes, the natural frequencies of the FBRE system is a concatenation
of the mount frequency and the base frequencies. Since the mount frequency has very little
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or no effect on the higher-order base modes, the inclusion of isolator damping will have
an effect on only the first mode. Remember that the first mode of the FBRE system is due
to the addition of the isolator and equipment to the base. Figure 3 shows the influence
of isolator damping for a low-frequency mount design at fo =7·12 Hz. As seen from this
figure, the FBRE model with no damping is similar to an undamped SDOF model except
for the infinite number of modes present at the higher frequencies. The FBRE
transmissibility decreases at a rate of 40 dB/decade after reaching the first mode which is
similar to the SDOF system. Also, as the damping is increased in the FBRE system, the
transmissibility of the first FBRE mode is attenuated, but the transmissibility at the other
frequencies is increased.

A different situation occurs when the mount frequency is designed between two of the
base modes. It was shown in the previous section that this type of design will have a
significant impact on the system’s frequencies. Figure 4 shows the influence of this
interaction when isolator damping is included for a system having a mid-frequency mount
designed at fo =71·18 Hz. This figure shows that attenuation in the first three modes have
occurred. The most significant attenuation occurs in the second mode since this mode is
due to the addition of the isolator and equipment to the base. The first and third modes
are attenuated as well, but not as significantly as the second mode. One significant
drawback in this design is that the transmissibility does not decrease at a rate of
40 dB/decade until the second mode. Therefore, the transmissibility will not be significantly
attenuated in the high frequency ranges compared to a low-frequency mount design, as
shown in Figure 3. A low-frequency mount design will also have more attenuation in the
first mode than a mid-frequency mount design. This is expected since the first mode for
the low-frequency mount system corresponds to the addition of the isolator.

Figure 4. Influence of isolator damping of FBRE system with fo =71·1762 Hz (−, passive isolation z=0; ––,
passive isolation z=0·2).
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Figure 5. Influence of isolator damping and mount frequency.

5.3.      

The previous sections discuss that a mid-frequency isolator mount should be used since
it can attenuate multiple modes when damping is presented in the isolator. However, the
drawback with this design is that the transmissibility will not decrease at a rate of
40 dB/decade until after the mount frequency is reached. Also, as the amount of passive
damping in the isolator is increased, the transmissibility of the system is increased in the
higher frequency ranges. Therefore, a trade-off between mount frequency designs should
be made when damping is present in the isolator.

This section will look at various isolator designs where three independent variables are
varied simultaneously: the equipment mass relative to the base mass, the isolator damping,
and the isolator mount frequency. This can be a very difficult problem to analyze for a
wide range of parameters and an approach by Sciulli [10] eliminates the complexity for
this type of analysis. This approach is used to find isolator design trends rather than finding
exact solutions to the problem. Briefly stated, the transmissibility of the system is
determined for the varying parameters and the root-mean-square (r.m.s.) of the
transmissibility is determined. The r.m.s. values of the transmissibility are then converted
to decibels and color coded depending on their value; low r.m.s. values are represented
by a black color and high r.m.s. values are represented by a white color. Values in between
are shaded according to the high and low r.m.s. values. The r.m.s. values are then plotted
in three dimensions with a color bar indicating values of the r.m.s. transmissibility for each
independent variable.

The FBRE system that will be studied will have the isolator mount frequency ranging
from 7 to 300 Hz, the isolator damping ratio ranging from 0·001 to 0·1, and the equipment
mass ranging from ten times smaller to ten times larger than the base mass. For this system,
structural damping in the base was neglected and the results are shown in Figure 5. As
expected, low-frequency mounts, which are defined by mount frequencies designed much
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lower than the lowest base mode, tend to perform best in an overall sense. The higher
mount frequencies, that is mount frequencies greater than the first base mode, tend to
perform poorly compared to low-frequency isolator mounts at equal isolator damping.
However, mid-frequency mounts with significant damping tend to perform equally well
compared to a low-frequency mount with minimal amount of damping. The mid-frequency
mounts do not include areas where the transmissibility is significantly high.

6. ACTIVE ISOLATION

Active control for the flexible base, rigid equipment (FBRE) system is divided into two
major parts. The first part is to determine the best placement of the sensor. That is, should
the sensor be placed on the equipment that is to be isolated or on the flexible base. The
second part will implement three different control strategies on the FBRE system. The
control laws that will be used are proportional-plus-integral-plus-derivative (PID)
controller [11, 12], a linear quadratic Gaussian (LQG) controller [13–15], and positive
position feedback (PPF) controller [16]. The control laws will be used to analyze the
transmissibility when the mount frequency is designed at fo =71·18 Hz and base damping
will be neglected. The transmissibility for the FBRE system is defined as the displacement
of the equipment due to the disturbance at the base.

6.1.  

For a SDOF model, velocity feedback does not increase the high frequency
transmissibility, but does add damping at the resonant condition. Similar results can be
obtained for the FBRE system depending on the sensor location. For the FBRE system,
the active controller will implement velocity feedback when no form of passive damping
is present in the isolator. The controller will try to add 20% damping to the first mode,

Figure 6. Comparison of feedback control from equipment and base (−, passive, no damping; ––, feedback
from equipment; --, feedback from base).
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Figure 7. Transmissibility for FBRE system using PID control (−, no control; ––, PID control; --, PD
control).

so a comparison can be made to the results obtained from the previous sections on passive
isolation. A mount design at fo =7·12 Hz is used since a design at fo =71·18 Hz will give
similar results.

When base feedback is used, the first mode of the FBRE system will be lightly damped
and the transmissibility at higher frequencies will be increased, as shown in Figure 6. This
is similar to the situation when passive damping is present in the isolator with one
significant difference being the amount of damping in the first mode. A small amount of
damping is present for the active system compared to the passive system; the active system
has a transmissibility of 40 dB (Figure 6) at the first mode while the passive system has
a transmissibility of about 8 dB (Figure 3). Therefore, for base feedback the passive system
dramatically outperforms the active system.

Different results are obtained when the sensor is located on the equipment. The first
mode is significantly attenuated compared to base feedback. Actually, the amount of
damping at the first mode is comparable to the system with passive damping in the isolator
(Figure 3). Also, the transmissibility at higher frequencies for the active isolator tracks an
undamped isolation system. The results in using equipment feedback are similar to a
SDOF model with the main difference being the inclusion of an infinite number of modes
in the FBRE system. Therefore, all control architectures used in the FBRE system should
use equipment feedback if the goal is to isolate the equipment from base disturbances.

The choice of sensor placement is consistent with an observability index approach
developed by Hughes and Skelton [17]. They developed a procedure to determine
observability indices for each system mode; the indices can then be ranked according to
their magnitudes. This ranking can then be used to determine the most beneficial sensor
location [18]. For instance, the observability indices of the first FBRE mode for base and
equipment feedback are Ob

1 =0·1247 and Oe
1 =4·4712, respectively. Since the observability

index for equipment feedback is greater than the observability index for base feedback,
the best sensor location is on the equipment.
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6.2. PID 

The first control architecture that will be implemented is a proportional-plus-integral-
plus-derivative (PID) controller. The form of the controller in the Laplace domain is

F(s)= (KP +KDs+KI /s)Y(s), (33)

where Y(s) is the displacement of the equipment, and KP , KD , and Ki are the proportional,
derivative, and integral gains, respectively. The gain for the proportional control was
chosen such that it would not affect the frequencies of the system. The derivative gain was
chosen to give a fast rise time with as little overshoot as possible, and the integral gain
was chosen to give good system error and settling time. The frequency response function
is shown in Figure 7. With a simple PID controller and having the mount frequency
designed between two base modes, the transmissibility will be simultaneously attenuated
at three different modes where the second mode exhibits the most damping. This is
attributable to the fact that this mode corresponds to the addition of the isolator and
equipment to the base. Significant attenuation of the first and third modes is also
accomplished.

6.3.    

Another controller that was used was the linear quadratic Gaussian (LQG) regulator.
This controller minimizes a quadratic cost function with respect to the states of the system
and the control input. For this controller, it is assumed that all the states are not known
so a Kalman–Bucy filter is used as an estimator. It is also assumed that the form of the
disturbance is known, and a shaping filter is used to model the disturbance. For
comparison to PID control, it is assumed that the disturbance occurs at the second mode,
and the results obtained using LQG control are shown in Figure 8. These results are similar
to the PID control shown in Figure 7 where the first three modes of the FBRE system

Figure 8. Transmissibility for FBRE system using LQG control (−, passive isolation; ––, LQG control).
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Figure 9. Transmissibility for FBRE system using PPF control (−, no control; ––, PPF control).

are attenuated. The major difference between the LQG control and PID control is the
notch that occurs at the second mode using a LQG regulator.

6.4.    

PID and LQG control have been shown to be quite effective, especially when the modes
are coupled. However, there may be situations where it is desired to attenuate only one
mode. A control methodology that can accomplish this is a positive position feedback
(PPF) controller. The PPF controller is basically a second-order filter in the form

ḧ+2zfvfḣ+v2
f =v2

fj, (34)

where j is the structural modal coordinate, h is the filter coordinate, vf is the filter
frequency, and zf is the filter damping ratio. The filter coordinate is applied to the
structure by the value gv2v2

f , where g is the gain and v is a mode of the structure. By
proper choice of zf and vf , the PPF controller can be used to attenuate any specific mode
of the structure.

The PPF filter was designed to attenuate the transmissibility at the first mode. The gain,
the filter frequency and damping ratio for the PPF compensator were chosen to give
adequate attenuation at the first mode. The results with the PPF filter are shown in Figure
9 and about 30 dB of attenuation of the mode was achieved. Even though the modes are
highly interactive for this mid-frequency mount design, the PPF filter does not affect any
of the other modes. This can be attributed to the fact that the attenuation is accomplished
through position feedback and not velocity feedback.

7. CONCLUSIONS

A method developed by Yang was used to find an analytical solution to a system that
has some flexible members. This method is then used to examine various design possibilities
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for vibration isolation when flexibility is important. Using this method, it was determined
that the design of the mount frequency will have a significant impact in the isolation design.
If the mount frequency is designed between two modes of the flexible base, a coupling
condition will exist between the affected modes. When damping is included in the isolator,
this coupling will simultaneously damp three modes instead of the usual one mode. With
the use of active controllers such as PID or LQG, the coupled modes can be significantly
attenuated compared to a passive isolation approach. It has also been shown that a PPF
controller will not attenuate three modes. This is due to the fact that the structural position
is used as feedback to the actuator. Therefore, the interaction of modes for a mid-frequency
mount design is due to velocity feedback.

It has also been shown that when an active isolator is implemented, it is desired to place
the feedback sensor on the equipment. If the sensor is placed on the base, the high
frequency transmissibility is increased similar to a system implementing passive isolation;
feedback from the equipment does not have this result. The amount of attenuation in
the first mode is significantly greater when feedback occurs from the equipment than
the base.
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APPENDIX: NOMENCLATURE

EI Young’s modulus×area moment of inertia
I identity matrix
M(s) boundary condition matrix at left end of a particular subsystem
N(s) boundary condition matrix at right end of a particular subsystem
P(x, s) local internal force vector
Qd

k global force vector of subsystem d at node k
Rd transformation matrix of local forces to global forces for subsystem d
Sd transformation matrix of local displacements to global displacements for subsystem d
Td transformation matrix of local displacements to global displacements for subsystem d
0 zero matrix
c isolator coefficient of damping
f(x, –) external force/unit length on subsystem in the time or Laplace domain
fI (x, –) point force/unit length due to the isolator
k isolator stiffness
me equipment mass
w(x, –) vertical deflection of base or vertical deflection of distributed system in the time or Laplace

domain
y, ẏ, ÿ displacement, velocity and acceleration of equipment
a proportional damping term for base
a(x, s) local displacement vector for a particular subsystem
b proportional damping term for base
o(x, s) local strain vector for a particular subsystem
g(–) external disturbances at the boundaries in the time or Laplace domain
r mass per unit length
h(x, s) solution vector for distributed system
z damping ratio of isolator defined as c/(2zkme )


